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Characteristics of Memory 
• Location 
• Capacity 
• Unit of transfer 
• Access method 
• Performance 
• Physical type 
• Physical characteristics 
• Organisation 



Location & Capacity 
• Location  

- closeness to CPU 
- Internal (main memory) 
- External (Peripheral IO Storage Devices, i.e. Hard Discs 

• Capacity Number of bytes or Word size  

• Unit of transfer 
- Internal memory: usually governed by data bus width 
- External Memory transfer in large units usually a block 

• Addressable unit 
- Smallest location which can be uniquely addressed 
- Many systems allow addressing at the byte level 

• Word 
- Word: Natural unit of memory organisation 8, 16, 32 bits 
- Word size : # of bits to represent int., or an instruction length. 



Access Methods (1) 
Access time: (AS)Time from moment an address is 
selected till moment location is reached 

 

• Sequential 
-Start at the beginning and read through in order 
-AS depends on location of data and previous location 
-Specific linear sequence. Units of data=records,e.g. tape 

 

• Direct 
-Shared R/W mechanism 
- Individual blocks have unique address based on physical 
location, e.g. disk 

-Access is by jumping to vicinity plus sequential search 
-AS depends on location and previous location 



Access Methods (2) 
• Random 

- Each addressable location has a unique wired-in 
addressing mechanism 

- Individual addresses identify locations exactly 
- AS to a given location is independent of the sequence 

of prior accesses and is equal 
- e.g. RAM 

 

• Associative 
- Random access like 
- Data is located by comparison of desired bit locations 

within a word for a specified match, and do this for all 
words simultaneously 

- AS is independent of location or previous access 
- e.g. cache 



Memory Hierarchy 
 



Memory Hierarchy - Diagram 

As one goes down the  
following occur: 
a.Decreasing cost per bit 
b.Increasing capacity 
c.Increasing access time 
d.Decreasing frequency of 

access of the memory 
by the processor 

• Registers 
—In CPU 

• Internal or Main memory 
—May include one or more levels of cache 
—“RAM” 

• External memory 
—Backing store 



Performance 
• Access time 

- Time between presenting the address and getting the valid data 
- For RAM, it is time to perform a R/W operation 
- For non-RAM, it is time it takes to position R/W mechanism at 
desired location 

• Memory Cycle time 
- Time may be required for the memory to “recover” before next 
access 

- Cycle time is access + recovery or (time required before a 2nd 
access (a.k.a. recovery time) 

• Transfer Rate 
- Rate at which data can be moved 
Tn = Ta + n/R 
Where: Tn Average time to read or write n bits,  
 Ta Average access time,  
 n# of bits, R Transfer rate in bits per second (bps) 



Physical Types 
• Semiconductor 

—RAM 
• Magnetic 

—Disk & Tape 
• Optical 

—CD & DVD 
• Others 

—Bubble 
—Hologram 

Physical Characteristics 
• Decay 
• Volatility 
• Erasable 
• Power consumption 

 



Organisation 

• Physical arrangement of 
bits into words 

• Not always obvious 
• e.g. interleaved 

Latency & Bandwidth 

• Latency: Delay in 
supplying an operand  

• Bandwidth: Amount of 
data supplied per unit 
time 

 The Bottom Line 
• How much? 

—Capacity 
• How fast? 

—Time is money 
• How expensive? 

 

• Registers 
• L1 Cache, L2 Cache 
• Main memory 
• Disk cache 
• Disk 
• Optical 
• Tape 

Hierarchy List 
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 CACHE 
 Masks the slow DRAM storing frequently accessed data, or may 

soon be accessed in a small fast SRAM memory (Locality). 
 Small amount of fast memory may be located on CPU chip or 

module 
 Sits between normal main memory and CPU 
 Its job is to reduce memory access by CPU 

Temporal Locality 
 
Data that have been used recently, 
have high likelihood of being used 
again 
 

- Code: loops, routines,… 
- Local variables and data structures 

 
Spatial Locality 
 
Data which follow in the memory other 
data which are currently being used 
are likely to be used in the future 
 

Code: usually read sequentially 
     Arrays 
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Cache may be located on CPU chip or module.  

Different levels of Cache. 



Cache operation – overview 
CPU requests contents of memory location 
• CPU Check cache for this data 
• If present, get from cache (fast) 
 -If not present: 
 - read required block from main memory to cache 
  - Then deliver from cache to CPU 
• Cache includes tags to identify which block of main 

memory is in each cache slot 
 

• The challenge in cache design is to ensure that the 
desired data and instructions are in the cache. The cache 
should achieve a high hit ratio. 

• The cache system must be quickly searchable as it is 
checked every memory reference. 
 



Cache/Main Memory Structure 

• MM consists of up to 2n 
addressable words, each having 
a unique n-bit address. 

• Cache consist of a # of fixed 
length blocks of K words each. 

A cache line contains two fields 
- Data from RAM (BLOCK) 
- The address of the block 

currently in the cache (TAG). 
- TAG field specifies the 

address currently in the 
cache line.  

Offset 
(w-bits) 

Tag 
(n-w bits) 

Memory 
Address 

Which byte  
in the block 

Which block  in taken  
from memory to cache 

• There are M = 2n/K blocks in main memory 
• The cache consists of m blocks, called lines. Each line 

contains K words, plus a tag. 
• The length of a line, without tag and control bits, is the 

line size. 
 



Cache Read Operation - Flowchart 

Processor generates the read address (RA) of a word to be read. 
If the word is contained in the cache, it is delivered to the 
processor. Otherwise, the block containing that word is loaded 
into the cache, and the word is delivered to the processor 



Cache Design 
• Addressing 
• Size 
   - more cache is expensive 
    - More cache is faster 
• Mapping Function 
   - which part of memory goes where in cache 

• Replacement Algorithm 
    - when replacing data in cache what to throw out 

• Write Policy 
    - when storing results, store them in cache only? 
• Block Size 
• Number of Caches: L1, L2, L3 



Cache Design 
● Cache hit/miss 
● Hit ratio: h, ratio of having hits to all cache references 
● Effectively reduces memory latency 
 
● Miss ratio: 1-h 
● Miss penalty: time the processor is stalled because 

the required data or instruction is not available for 
execution 

 
● Average access time: 
 

Where: 
C = access time to info in cache 
M = Miss Penalty 



Cache Design 

● Using multiple caches improves bandwidth & latency: L1, 
L2, L3 

● L2 may be slower than L1, but its speed is less critical, 
only affecting the miss penalty of L1 

 

● L2 must be a lot larger to: 
 - Ensure a large hit ratio 
 - reduce the impact of main memory speed on performance 
 

● Average access time: 
 
 
Where                      is the number of misses in the L2  
 
● If h1 & h2 are 90%, then the number of misses is less 

than 1% of the processor memory access 



Cache Addressing 
• Where does cache sit? 

—Between processor and virtual memory management unit 
—Between MMU and main memory 

 

• Logical cache (virtual cache) stores data using 
virtual addresses 
—Processor accesses cache directly, not thorough physical 

cache 
—Cache access faster, before MMU address translation 
—Virtual addresses use same address space for different 

applications 
– Must flush cache on each context switch 

 

• Physical cache stores data using main memory 
physical addresses 



Typical Cache Organization 

When a cache hit occurs, the data and address buffers are disabled and 
communication is only between processor and cache with no system bus traffic. 
When a cache miss occurs, the desired address is loaded onto the system bus and 
the data are returned through the data buffer to both cache  and processor.    

• The cache connects to the processor via data, control, and address lines.  
• The data and address lines also attach to data and address buffers, which 

attach to a system bus from which main memory is reached. 



The cache can be places between the processor and the MMU or 
between the MMU and main memory. 

Logical and Physical Cache 

A logical or virtual cache, 
stores data using virtual 
addresses.  
Processor accesses the 
cache without going 
through the MMU.  
Cache access speed is 
faster than physical cache, 
because it can respond 
before MMU performs any 
address translation 

A physical cache stores 
data using main memory 
physical addresses. 



Mapping Function 

• A algorithm is needed for mapping main memory 
blocks (MMB)into cache lines 
 

• A way is needed for determining which MMB 
currently occupies a cache line 
 

• Choice of mapping  function dictates how cache is 
organized: 
 
- Direct: each address has a specific place in the cache 
 
- Associative: search the entire cache for an address 
 
- Set associative: each address can be in any of a small 

set of the cache locations  



Direct Mapping 
• Each block of main memory maps to only one cache line 

- i.e. if a block is in cache, it must be in one specific place 
 

 
 
 

• Address is in two parts 
• Least Significant w bits identify unique word 
• Most Significant s bits specify one memory block 
• The MSBs are split into a cache line field r & a tag of s-r  

Cache line Main Memory blocks held 
0   0, m, 2m, 3m…, 2n-m      (m = 2k) 
1   1, m+1, 2m+1…, 2n-m+1 
… 
2k-1  m-1, 2m-1, 3m-1…, 2n-1 

Direct Mapping pros & cons 
• Simple & Inexpensive 
• Fixed location for given block 

—If a program accesses 2 blocks that map to the same line 
repeatedly, cache misses are very high 



Direct Mapping Address Structure 

• Address length = (s + w) bits 
• Number of addressable units = 2s+w words or bytes 
• Block size = line size = 2w words or bytes 
• Number of blocks in main memory = 2s+ w/2w = 2s 

• Number of lines in cache = m = 2r 
• size of the cache = 2r+w words or bits 
• Size of tag=(s–r) bits, cache size/block size =#of lines 
 
 
 
• The lower W bits=log2(block size) of memory address 

define which byte in the block 
• The next r-bits =log2(number of lines) defines which line 

of the cache (Index) 
• The remaining upper bits are the TAG field 

 

TAG 
(s-r) 

LINE or Slot 
(r) 

Word 
(w) 



Direct Mapping from Cache to Main Memory 



Direct Cache Mapping Example 

TAG 
(17) 

INDEX 
(9) 

OFFSET 
(6) 

OFFSET 
(6) 

INDEX 
(9) 

TAG 
(17) 

01001101011101110    101101101 101001 

Memory address 

Assuming 
• 4 GB DRAM addressed then by n=32 bits. (232 = 4 GB) 
• 32 KB of cache  
• Blocks of 64 bytes. Then the byte offset is w=6 bits. (26 = 64) 
• Number of cache lines is then 32 KB / 64 = 512.  
• The line index is then k=9 bits (= log2(512) = 9). 
• The TAG field is then n-k-w = 17 bits. 
 
 
 
 
With a memory address of 01001101011101110101101101101001 
• Compare the TAG field of line 101101101 in cache 
• for the value 01001101011101110.  
• If it matches, return byte 101001 of the line. 



Associative Mapping 

• The data from any location in RAM can be stored in any 
location in cache 

• A main memory block can load into any line of cache 
• When processor wants an address, all tag fields in the 

cache are checked to determine if the data is already in 
the cache 

• Each tag line requires circuitry to compare the desired 
address with the tag field of memory address 

• All tags fields are checked in parallel 
• Memory address is interpreted as tag and word 
• Tag uniquely identifies block of memory 

 



Associative Mapping Address Structure 

• Address length = (s + w) bits 
• Number of addressable units = 2s+w words or bytes 
• Block size = line size = 2w words or bytes 
• Number of blocks in main memory = 2s+w/2w = 2s 

• Number of lines in cache = undetermined 
• Size of tag = s bits 

Offset 
(w-bits) 

Tag 
(s bits) 

Memory 
Address 

Which byte  
in the block 

Which block  in taken  
from memory to cache 



OFFSET 
(6) 

 
 

TAG 
(26) 

01001101011101110101101101    101001 

Memory address 

Fully Associative Cache Mapping Example 

Assuming the same: 
• 4 GB DRAM addressed then by n=32 bits. 
• 32 KB of cache  
• Blocks of 64 bytes. Then the offset is w=6 bits. 
• Number of cache lines is then 32 KB / 64 = 512.  
• The line index is then k=9 bits (= log2(512)). 
• The TAG field is then n-w = 26 bits. 

 
 
 
 
 
With a memory address of 01001101011101110101101101 101001 
• Compare all tag fields in cache for the value 
 01001101011101110101101101.  
• If a match is found, return byte 101001 of the line 

Offset 
(6-bits) 

Tag 
(26-bits) 

Memory 
Address 



Associative Mapping from  
Cache to Main Memory 

The disadvantage of direct mapping is by permitting each 
main memory block to be loaded into any line of the cache.  



Set Associative Mapping 
• Set associative cache mapping is a mixture between 

direct and fully associative mapping 
 

• Cache lines are divided into a number of sets 
 

• Each set contains a number of lines that can vary from Z 
= 2 to 16 (Z way associative mapping) 
 

• A portion of the address is used to specify which SET will 
hold an address 
 

• The data can be stored in any of the lines in the SET. 
 

• When the processor wants an address, it indexes to the 
SET and then searches the tag fields of all lines in the 
SET for the desired address. 



Set Associative Mapping Address Structure 

TAG SET 
 

Word 
(w) 

• Address length = (s + w) bits 
• Number of addressable units = 2s+w words or bytes 
• Block size = line size = 2w words or bytes 
• Number of blocks in main memory = 2d 

• Number of lines in set = k 
• Number of sets = v = 2d 

• Number of lines in cache = kv = k * 2d 

• Size of tag = (s – d) bits 
• m= log2(S=number of sets) bits to address the SETs 
• and w = log2(block size) bits for byte offset 

 



• Assuming the same: 
—4 GB DRAM addressed then by n=32 bits. 
—32 KB of cache  
—Blocks of 64 bytes. Then the offset is w=6 bits. 
—Number of cache lines is then 32 KB / 64 = 512.  
—For (Z=4)-way set associative, the # of SETs is S=512/4=128  
—SET bits in memory address = m=log2(128) = 7. 
—The TAG field is then n-m-w = 19 bits. 

 
 
 

• With a memory address of 0100110101110111010 1101101   101001 
—Compare all tag fields of lines 110110100 to 110110111 (as we 

have Z=4-way) with the value  0100110101110111010.  
—If a match is found, return byte 101001 of the corresponding line. 

TAG 
(n-m-w=19) 

SET 
(m=7) 

OFFSET 
(w=6) 

0100110101110111010    1101101    101001 
Memory address 

OFFSET 
(w=6) 

SET 
(m=7) 

TAG 
(19) 

Set Associative Mapping Example 



Mapping From Main Memory to Cache: ν Associative 

Each word maps into all the cache 
lines in a specific set, so that main 
memory block B0 maps into set 0, 
and so on.  
Thus, the set-associative cache can 
be physically implemented as 
associative caches. 



Mapping From Main Memory to Cache: 
k-way Associative 

Each direct-mapped cache is referred to as a way, consisting of ν 
lines. The first ν lines of main memory are direct mapped into the 
ν lines of each way; the next group of ν lines of main memory are 
similarly mapped, and so on. 



Replacement Algorithms 

• When a cache miss occurs, data is copied into some 
location in cache. 
 

• With Set Associative or Fully Associative mapping, 
the system must decide where to put the data and 
what values will be replaced. 
 

• Cache performance depends greatly on the way of 
replacing data. 

 



Replacement Algorithms 
• Direct mapping 

—Each block only maps to one line 
—Replace that line 

• Associative & Set Associative mapping: 
—Hardware implemented algorithm (speed) 
—Least Recently used (LRU) 
—e.g. in 2 way set associative 

– Which of the 2 block is LRU? 
—First in first out (FIFO) 

– replace block that has been in cache longest 
—Least frequently used 

– replace block which has had fewest hits 
—Random 

 



LRU and Pseudo LRU Replacement 
LRU Replacement 
• LRU is easy to implement for 2-way set associative. 
• You only need one bit per set to indicate which line in the set 

was most recently used. 
• LRU is difficult to implement for larger ways. 
 

• For an N-way mapping, there are N! different permutations 
of use orders.  

• It would require log2(N!) bits to keep track, so the Solution 
is Pseudo LRU Algorithm. 
 

Pseudo LRU Replacement 
• Pseudo LRU is frequently used in set associative mapping with 

more than 2-ways. 
• In pseudo LRU there is a bit for each half of a group indicating 

which have was most recently used. 
• For 4 way set associative, one bit indicates that the upper two 

or lower two was most recently used. For each half another bit 
specifies which of the two lines was most recently used. 



Write Policy 
When a write operation is performed on a cache, two 
mechanisms can be adopted: 

—Write through 
—Write back 
 

Write through:  
The information is written to both the block in the 
cache and to the block in the main memory. 
 

• All writes go to main memory as well as cache 
• Multiple CPUs can monitor main memory traffic to keep local 

(to CPU) cache up to date 
• Lots of traffic => Slows down writes 
• Remember bogus write through caches! 



Write Policy 
Write Back: 
The information is written only to the block in the 
cache. The modified cache block is written to main 
memory only when it is replaced. 
 

• Updates initially made in cache only 
• Update bit for cache slot is set when update occurs 
• If block is to be replaced,  

—write to main memory only if update bit is set 
• Other caches get out of sync 
• I/O must access main memory through cache 
• N.B. 15% of memory references are writes 

 



Line Size 
• Retrieve not only desired word but a number of 

adjacent words as well 
 

• Increased block size will increase hit ratio at first 
—the principle of locality 
 

• Hit ratio will decreases as block becomes even bigger 
—Probability of using newly fetched information becomes 

less than probability of reusing replaced 
 

• Larger blocks  
—Reduce number of blocks that fit in cache 
—Data overwritten shortly after being fetched 
—Each additional word is less local so less likely to be needed 

 
• No definitive optimum value has been found 
• 8 to 64 bytes seems reasonable 
• For HPC systems, 64- and 128-byte most common 



Multilevel Caches 
• High logic density enables caches on chip 

—Faster than bus access 
—Frees bus for other transfers 
 

• Common to use both on and off chip cache 
—L1 on chip, L2 off chip in static RAM 
—L2 access much faster than DRAM or ROM 
—L2 often uses separate data path 
—L2 may now be on chip 
—Resulting in L3 cache 

– Bus access or now on chip… 



Cache Coherency 
If more than one CPU is present w/a cache to each, & one shared 
memory 

- If data in one cache is altered => data in other caches & in 
shared memory is invalid 

- Maintaining cache coherency is done through: 
�Bus watching w/ write through: 
─ Every master on bus monitors address lines 
─ If a master writes to a shared memory location that is also in 

cache 
─ Cache controller invalidates cache entry 
�Hardware transparency: all updates to main memory are 

reflected in all caches 
�Non cacheable memory: 
- Only a portion of main memory is shared by more than 1CPU 
- Shared memory is designated as noncacheable 
- Shared memory is never copied into cache 
- All accesses to shared memory are cache misses 



Unified v Split Caches 
• One cache for data and instructions or two, 

one for data and one for instructions 
 
• Advantages of unified cache 

—Higher hit rate 
– Balances load of instruction and data fetch 
– Only one cache to design & implement 
 

• Advantages of split cache 
—Eliminates cache contention between instruction 

fetch/decode unit and execution unit 
– Important in pipelining 



Pentium 4 Cache 
• 80386 – no on chip cache 
• 80486 – 8k using 16 byte lines and four way set 

associative organization 
• Pentium (all versions) – two on chip L1 caches 

—Data & instructions 
• Pentium III – L3 cache added off chip 
• Pentium 4 

—L1 caches 
– 8k bytes 
– 64 byte lines 
– four way set associative 

—L2 cache  
– Feeding both L1 caches 
– 256k 
– 128 byte lines 
– 8 way set associative 

—L3 cache on chip 



Pentium 4 Block Diagram 



Pentium 4 Core Processor 
• Fetch/Decode Unit 

—Fetches instructions from L2 cache 
—Decode into micro-ops 
—Store micro-ops in L1 cache 

• Out of order execution logic 
—Schedules micro-ops 
—Based on data dependence and resources 
—May speculatively execute 

• Execution units 
—Execute micro-ops 
—Data from L1 cache 
—Results in registers 

• Memory subsystem 
—L2 cache and systems bus 



Pentium 4 Design Reasoning 
• Decodes instructions into RISC like micro-ops before L1 

cache 
• Micro-ops fixed length 

— Superscalar pipelining and scheduling 
• Pentium instructions long & complex 
• Performance improved by separating decoding from 

scheduling & pipelining 
— (More later – ch14) 

• Data cache is write back 
— Can be configured to write through 

• L1 cache controlled by 2 bits in register 
— CD = cache disable 
— NW = not write through 
— 2 instructions to invalidate (flush) cache and write back then 

invalidate 
• L2 and L3 8-way set-associative  

— Line size 128 bytes 



ARM Cache Organization 
• Small FIFO write buffer 

—Enhances memory write performance 
—Between cache and main memory 
—Small c.f. cache 
—Data put in write buffer at processor clock 

speed 
—Processor continues execution 
—External write in parallel until empty 
—If buffer full, processor stalls 
—Data in write buffer not available until written 

– So keep buffer small 



ARM Cache and Write Buffer Organization 



Direct Mapping Cache Organization 
• Each main memory address can be viewed as consisting of three fields. 
• The w bits identify a unique word or byte within a block of main memory 
• The remaining s bits specify one of the 2s blocks of main memory 
• The cache logic interprets these s bits as a tag of s-r bits and a line field of r 

bits. This field identifies one of the m=2r lines of the cache 



Fully Associative Cache Organization 

the cache control logic interprets a memory address simply as a Tag and 
a Word field. The Tag field uniquely identifies a block of main memory. 
The cache control logic must simultaneously examine every line’s tag for 
a match. Note that no field in the address corresponds to the line #, so 
that the # of lines in the cache is not determined by the address format. 



K-Way Set Associative Cache 
Organization 



Direct Cache Mapping Example 

Data (Read to CPU) 

CPU reads Data from main Memory 
and places it in cache if V=0 
otherwise proceed for replacement. 

Data (Blocks of 64 bytes) Tag cache V 

Byte Offset (w = 6 bits) Line INDEX (k = 9 bits) Tag (n-k-w = 17b) 

Memory Address  (n=32 bits) = 010011010111011 10101101101 101001  

511 

0 

Cache 

= 
HIT 
if 1 

MISS if 0 

64x1 Mux 
w 

Bloc (64 Bytes) 

en 

… 

 Line 365 = 1011011012 

Compare the TAG field 
of line 101101101 in 
cache for the value 
01001101011101110.  
 
If it matches, return byte 
1010012 (=41) of the line. 

01
00

11
01

01
11

01
1 

=010011010111011? 

Byte 41=1010012 

- Direct Mapping has 
the lowest performance, 
but is easiest to 
implement. 
- Direct is often used for 
instruction cache. 
- Sequential addresses 
fill a cache line and 
then go to the next 
cache line. 
- Intel Pentium level 1 
instruction cache 
uses Direct Mapping. 



Fully Associative Cache Mapping Example 

Données (Blocs) Tag cache V 

Byte offset (w = 6 bits) TAG  (n-w = 26 bits) 

Adresse  mémoire (n=32 bits) 

511 

0 

Cache 

= 

HIT 
if 1 

MISS if 0 

64x1 Mux 
w 

Block (64 Bytes) 

Data (Read to CPU) 

= 

= 
= 

= 

. 

. 

. 

en 

2k= 512 
comparators HW logic 

Mux, … 

This logic is duplicated 512 timess 

… 511 

0 

NOTE: 
One block from 
Main memory 
Can be placed 
in any line of the cache. 

Index  (k) 

… 

- Fully Associative 
mapping works the 
best, but is complex 
to implement.  
 
-Each tag line 
requires circuitry to 
compare the desired 
address with the tag 
field. 
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